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Statistical analysis of 
biological assays

Yossi Levy
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What is a bioassay?

Bioassays are for estimating the 
potency of a drug by utilizing the 
reaction caused by its application to 
live experimental subjects.

Bioassay always compares a test
substance to a standard substance

� Assumptions

� Comparable organisms

� Same active compound

� Only concentration can vary
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Bioassay 
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Role of statistics in bioassay

� Advise on the general statistical principles underlying the 
assay method

� Devise a good experimental design that gives the most 
useful and reliable results

� Analyze the data making use of all the evidence on potency
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Types of bioassay

� Direct assay: response is directly measured

� Indirect assay

� Quantitative

� Binary

Examples

� Direct assay: Measure insulin level in blood

� Indirect assay

� Quantitative: change in weight of a certain organ

� Binary: dead or alive

6

Potency

� Potency is the dose of a compound required to cause a 
particular response
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Relative potency

� Relative potency is the ratio of the tested compound 
potency to the reference standard potency
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Statistical models for quantitative 
assays

� Parallel line model

� Logistic model (4 or 5 parameters)

� Slope Ratio model
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Basic requirements for applying a 
quantitative bioassay model

� Randomization

� Responses are Normally distributed

� Homogenous variances

A logarithmic transformation of the response 

measure is recommended to improve 

compliance with second and third requirements 

when necessary.
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Requirements for PLA model

� The relationship between the logarithm of the dose and the 
response can be represented by a straight line.

� For any unknown (tested) substance the straight line is 
parallel to that of the standard.
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1 picture = 1000 words
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PLA in practice

� Design restrictions imposed by the ICH guidelines

� Experimental design

� Analysis of covariance

� Tests of validity

� Potency estimation and confidence limits

� Handling missing values

� Troubleshooting
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Design restrictions

� Each substance must be tested with the same number of 
dilutions

� The ratio of adjacent doses must be constant for all 
treatments

� There must be an equal number of experimental units to 
each treatment

14

adjacent log-doses are equally 

spaced

3 dilutions 

per 

substance

9 experimental 

units per 

treatment

Design restrictions
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Experimental design

ICH guideline also discusses:

� Randomized block design

� Latin-square designs

� Cross-over designs

Completely randomized design – if experimental units are 

reasonably homogeneous.
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Tests of validity

The bioassay PLA model is valid if

� Assay must show response

� Response must be linear

� Response lines must be parallel
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How to assess linearity?

� Just look at R2 - naive

� Add a quadratic term to the model and verify that it is non-
significant

� Model dose/dilution as a class variable, and compare the 
results to the “correct” model, using log-likelihood test

� Linear contrasts – compare slope between each two 
adjacent doses to the next slope
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How to asses parallelism?

Let βI be the regression coefficient of the interaction 
term, logdose*substance

� If the corresponding p-value is less than α, we 
conclude non-parallelism

� If the corresponding p-value is greater than α, then 
what?

Significance test approach: H0: βI=0
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How to asses parallelism?

� Pre-determine acceptance limits for βI: [-A, A]

� Calculate a 1- α confidence interval for βI: (βL, βU)

� Reject H0 if –A< βL and βU<A

Equivalence test approach: H0: βI≠0

But, how one would determine A?

20

Which approach is better?

� It depends

� For more details see:

Evaluations of Parallelism Test Methods Using ROC Analysis
Harry Yang and Lanju Zhang, MedImmune

2009 Non-clinical Biostatistics Conference, Boston, MA

http://www.hsph.harvard.edu/ncb2009/files/ncb2009-c06-

yang.pdf

Key conclusion:
An optimal cut off value, in terms of test statistic, p- value 
or equivalence bound can be chosen to make best trade-

off between sensitivity and specificity
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Example

data in;

input substance $ conc y1 y2 y3;

lconc=log(conc);

cards;

RS 100 4050.538 4019.029 3260.831

RS 50 1432.281 1823.191 1422.876

RS 25 558.284 587.956 848.65

RS 12.5 302.114 336.969 414.975

RS 6.25 191.442 244.982 213.579

RS 3.125 158.749 128.868 118.364

TB 100 1366.585 2134.742 2075.934

TB 50 660.938 669.61 872.149

TB 25 453.385 412.586 424.543

TB 12.5 269.963 193.644 222.505

TB 6.25 145.862 145.862 156.593

TB 3.125 143.725 83.434 61.609

;

run;

22
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Apply log transformation to Y
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Add regression lines
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Testing linearity

� Run a quadratic model for each substance:

� E[log(Y)]=β0+ β1·log(concentration) + β2·log(concentration)2

� Reject linearity if β2 is significantly different from zero

� In order to assess linearity, non-linearity must be rejected 
for each of the substances

� What is the problem in this approach?

26

Test linearity - RS
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Test linearity - TB

28

Select sub-range

� Linearity of the whole concentration range was not 
assessed

� It is possible that the response is linear in a sub-range of at 
least 4 concentrations:

� 3.125-50 (5 concentrations)

� 6.25-100 (5 concentrations)

� 3.125-25 (4 concentrations)

� Etc..

� The guideline allows selecting the “best range”
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How to select the “best range”?

� It must demonstrate linearity response and parallelism

� If there is more that one such sub-range, the best one 
should be chosen

� Most commercial software select the range with highest 
R2

� Better approach: select range with highest signal to 
noise ratio:

MSE

YY
NS minmax/

−
=

*The example will continue with the upper range: 12.5-100

30

Linearity testing – Upper range
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Testing response

� Linearity has been assessed. The quadratic term can be 
removed from the model

� Run a linear model for each substance:

� E[log(Y)]=β0+ β1·log(concentration)

� Reject null hypothesis of no response if β1 is significantly 
different from zero

� In order to assess response, null hypothesis must be 
rejected for each of the substances

32

Results of response test
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Parallelism test

� Response has been assessed. Add substance and its 
interaction with concentration to model

� Run a linear model for whole data over the chosen range:

� E[log(Y)]=β0 + β1·log(concentration) + β2· Substance + 
β3·log(concentration)*Substance

� Substance is modeled as a 0-1 variable

� Either test whether β3 is significantly different from 
zero, 

� Or better: construct a confidence interval for β3 

34

Parallelism test results
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Relative potency estimation

� The final bioassay model over the chosen range is:

� E[log(Y)]=β0 + β1·log(concentration) + β2· Substance 

� Substance is modeled as a 0-1 variable

� This model implies that for the RS (substance=0)

� E[log(Y)]=β0 + β1·log(concentration)

� And for the TB (substance=1)

� E[log(Y)]=(β0 + β2 )+ β1·log(concentration)

36

Relative Potency estimation
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The final bioassay model

38

Relative Potency estimation
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How to calculate a confidence 
interval?

� You can’t.

� Estimators of β are linear combinations of the Ys, that 
are normally distributed

� Therefore, estimators of β are normally distributed

� So the distribution of                      is Cauchy 

� Instead of a confidence interval, we calculate fiducial 
limits

1

2

ˆ

ˆ
ˆlog

β
β

ρ =
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Fieller’s theorem

Let µ and ν be two unknown parameters, and let ρ= µ/ν.

Let a and b be unbiased estimators for µ and ν, 
respectively, that are linear in observations that are 
normally distributed.

Let the variances and covariance estimates of a and b be 
v11s

2, v22s
2 and V12s

2, respectively, where s2 is an error 
mean square having m degrees of freedom.

Let t be the α/2 critical value from a t distribution with m-1 
degrees of freedom, and let g=t2s2v22/b

2.

Let R=a/b and estimate for ρ. Then upper and lower 

confidence limits for ρ are:
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Fieller’s theorem
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Proof of Fieller’s theorem

Let U=a-ρb. Then EU=0 and its estimated variance is 

s2(v11-2ρv12+ ρ2v12) with m degrees of freedom.

Therefore:

( )[ ] αρρ −=+−≤ 1222 2

1211

222
vvvstUP

The results follows for solving the quadratic 
equation in ρ.
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v11
v22

s

Fiducial limits calculation
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Troubleshooting

� Problem: Exceptionally high residual error (MSE)

� Solution: this is an indication of technical problem – check 
the bioassay process

� Problem: Exceptionally low residual error may cause F 
values to exceed critical values. 

� Solution: replace residual error by estimate from historical 
data.
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Non linear response

46

4-parameter model

{ })(exp1 γβ
δα

δ
−−+

−
+=

x
EY

� α - upper asymptote

� δ - lower asymptote

� β – slope factor

� γ - horizontal location

� Validity of model: α, δ and β – are same for RS and TB

� Log(relative potency) = γRS - γTB
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Quantal Bioassay

� Response is discrete

� Often a binary response: e.g. Dead/Alive

� Dose response function is sometimes called “Tolerance 
Distribution”

� A logistic distribution is a natural model for such data

48

Example: Bacterial tolerance

1.2·108 5 0

1.2·107 5 1

1.2·106 4 2

1.2·105 2 3

1.2·104 0 5

1.2·103 0 5

Bacterial Dose Dead Alive
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Modeling
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Probability of death at level xi of drug (or bacterial 
concentration) is

Where Yi is the tolerance for subject i.
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LD50/ED50

� The dose at which 50% of subjects produce a response 
is called LD50 or ED50 (LD=lethal dose, ED=effective 
dose)

� Let x50=log(LD50) and p50=0.5 (probability of response at 
the median of the tolerance distribution). Then
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Confidence interval for LD50
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Using Taylor series expansion (the delta method):

Then a 100(1-α)% CI for log(LD50) is

)ˆ(ˆ
502150 xVzx α−±

52

Data and model
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proc logistic output

{ }

)101.2,109.10()6.14,6.11(exp

is50for CI
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Comparing two drugs

14

13

12
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9

8

7

6

5

4

3

2

1

S 100.00 8 2 10

N 30.00 7 3 10

S 30.00 5 5 10

S 10.00 4 6 10

N 10.00 5 5 10

S 3.00 0 10 10

N 3.00 1 9 10

S 1.00 0 10 10

N 1.00 4 6 10

S 0.30 0 10 10

N 0.30 1 9 10

N 0.10 1 9 10

N 0.03 1 29 30

N 0.01 0 30 30

Drug Dose Dead Alive Total

NS ZZ ρ=

The dilution 
assumption:
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Comparing two drugs

56

Comparing two drugs

� Dilution assumption: zS=ρ·zN for doses of S and N with 
the same probability of response

� If x represents log of dose, then xS= logρ+xN

� Logistic model for drug S is:
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Comparing two drugs
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Therefore, for drug N, remembering that xS= logρ+xN, a 
logistic model for drug N is:
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Comparing two drugs
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The assumption  can be tested by fitting a model 

with separate intercepts and slopes and then testing 

for common slope

Therefore, the dilution assumption implies that:
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Testing for common slope – SAS 
output

Interaction term is not statistically significant

=> common slope

=> the dilution assumption holds
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Run model without interaction
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The model
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Parameter estimates
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