Statistical analysis of
biological assays

Yossi Levy

What is a bioassay?

Bioassays are for estimating the
potency of a drug by utilizing the
reaction caused by its application to
live experimental subjects.

Bioassay always compares a test
substance to a standard substance

= Assumptions
= Comparable organisms
= Same active compound
= Only concentration can vary
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Role of statistics in bioassay m

= Advise on the general statistical principles underlying the
assay method

= Devise a good experimental design that gives the most
useful and reliable results

= Analyze the data making use of all the evidence on potency
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Types of bioassay _1 e

= Direct assay: response is directly measured

= Indirect assay
= Quantitative
= Binary

Examples

= Direct assay: Measure insulin level in blood
= Indirect assay

= Quantitative: change in weight of a certain organ
= Binary: dead or alive

= Potency is the dose of a compound required to cause a
particular response

Response

Required /_7

Response

Potency

Dose
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Relative potency

= Relative potency is the ratio of the tested compound
potency 1o the reference standard potency

Response

Tested Compound
reference Compound
Required

P 3
T ¥ Dose

Patency

Pr

Relative Potency = —
pR
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Statistical models for quantitative
assays ,‘

= Parallel line model
= Logistic model (4 or 5 parameters)
= Slope Ratio model
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Basic requirements for applying a
quantitative bioassay model

= Randomization
= Responses are Normally distributed
= Homogenous variances

A logarithmic transformation of the response
measure is recommended to improve
compliance with second and third requirements
when necessary.

Requirements for PLA model J ,

= The relationship between the logarithm of the dose and the
response can be represented by a straight line.

= For any unknown (tested) substance the straight line is
parallel to that of the standard.

10
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PLA in practice

Design restrictions imposed by the ICH guidelines
Experimental design

Analysis of covariance

Tests of validity

Potency estimation and confidence limits
Handling missing values

Troubleshooting

12
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Design restrictions | 322

= Each substance must be tested with the same number of
dilutions

= The ratio of adjacent doses must be constant for all
treatments

= There must be an equal number of experimental units to
each treatment

13

Design restrictions

9 experimental

units per
treatment
3 dilutions
per
substance \

adjacent log-doses are equally
spaced

14
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Experimental design _1

Completely randomized design — if experimental units are
reasonably homogeneous.

ICH guideline also discusses:
= Randomized block design
= Latin-square designs

= Cross-over designs

15

Tests of validity El

The bioassay PLA model is valid if
= Assay must show response

= Response must be linear

= Response lines must be parallel

16
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How to assess linearity? Jm :

= Just look at R? - naive

= Add a quadratic term to the model and verify that it is non-
significant

= Model dose/dilution as a class variable, and compare the
results to the “correct” model, using log-likelihood test

= Linear contrasts — compare slope between each two
adjacent doses to the next slope

17

How to asses parallelism? m

Let B, be the regression coefficient of the interaction
term, logdose*substance

Significance test approach: H,: ;=0

= If the corresponding p-value is less than o, we
conclude non-parallelism

= [f the corresponding p-value is greater than a, then
what?

18
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How to asses parallelism? Jm :

Equivalence test approach: H,: B,#0

= Pre-determine acceptance limits for B,: [-A, A]
= Calculate a 1- o confidence interval for 3;: (B, By)
= Reject H, if -A< B and B <A

But, how one would determine A?

19

Which approach is better? M

= |t depends

= For more details see:
Evaluations of Parallelism Test Methods Using ROC Analysis
Harry Yang and Lanju Zhang, Medimmune
2009 Non-clinical Biostatistics Conference, Boston, MA
http://www.hsph.harvard.edu/ncb2009/files/ncb2009-c06-
yang.pdf

Key conclusion:

An optimal cut off value, in terms of test statistic, p- value
or equivalence bound can be chosen to make best trade-
off between sensitivity and specificity

20
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Example

data in;

input substance $ conc yl y2 y3;

lconc=log(conc);

cards;
RS 100 4050.538 4019.029 3260.831
RS 50 1432.281 1823.191 1422.876
RS 25 558.284 587.956 848.65
RS 12.5 302.114 336.969 414.975
RS 6.25 191.442 244.982 213.579
RS 3.125158.749 128.868 118.364
TB 100 1366.5852134.742 2075.934
TB 50 660.938 669.61 872.149
TB 25 453.385 412.586 424.543
TB 12.5 269.963 193.644 222.505
TB 6.25 145.862 145.862 156.593
TB 3.125143.725 83.434 61.609
i

run;
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Take a look
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log(Concetration)
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Testing linearity ‘1 !

= Run a quadratic model for each substance:
= E[log(Y)]=B,+ B;-log(concentration) + B,log(concentration)?

= Reject linearity if B, is significantly different from zero

= In order to assess linearity, non-linearity must be rejected
for each of the substances

= What is the problem in this approach?

25

Test linearity - RS M

Sum of
Source DF Squares | Mean Square | F Value | Pr=F
Model 2| 23.53750642 | 11.76875321| 553.95| <.0001
Error 15| 0.31867988| 0.02124533

-1

Corrected Total | 17 | 23.85618630

R-Square | Coeff Var| Root MSE | ly Mean

0.986642 | 2.200293 | 0.145758 | 6.364154

Source | DF Type ISS | Mean Square | F Value| Pr=F

—

23.07441121 | 23.07441121 | 1086.09 | <.0001
0.46309521 0.46309521 21.80 | 0.0003

leone

lcone2

—

26
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Test linearity - TB Jm :

Sum of

Source DE Squares | Mean Square | F Value | Pr>=F
Model 2| 18.08296613 0.04148307 | 203.15| <.0001
Error 15| 0.66759614 | 0.04450641
Corrected Total | 17| 18.75056228
R-Square | Coeff Var| Root MSE | ly Mean

0.964396 | 3.606697| 0.210965 | 5.849269
Source | DF Type 155 | Mean Square | F Value | Pr=F
leone 1|17.85632170 | 17.85632170| 401.21| =.0001
leome2 1| 0.22664444 | 0.22664444 5.00| 0.0394
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Select sub-range m

Linearity of the whole concentration range was not
assessed

It is possible that the response is linear in a sub-range of at

least 4 concentrations:
= 3.125-50 (5 concentrations)
= 6.25-100 (5 concentrations)
= 3.125-25 (4 concentrations)

= Etc..

The guideline allows selecting the “best range”

28
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How to select the “best range”?

L

= |t must demonstrate linearity response and parallelism

= If there is more that one such sub-range, the best one
should be chosen

= Most commercial software select the range with highest

R2

noise ratio:

SIN=-—+=-

Y

ax Ymin

MSE
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= Better approach: select range with highest signal to

*The example will continue with the upper range: 12.5-100

Linearity testing — Upper range m

substance=RS substance=TB
Sum of Sum of

Source DF Squares | Mean Square | F Value | Pr>=F Source DF Squares | Mean Square | F Value | Pr=F
Model 2| 9.64902455 4.82451228 | 186.22 | <.0001 Model 2| 6.95727004 3.47863502 | 114.99 ( <.0001
Error 9| 0.23317353 | 0.02500817 Error 9027226780 | 0.03025198
Corrected Total | 11| 9.88219809 Corrected Total | 11| 7.22053784

R-Square | Coeff Var | Root MSE | Iy Mean R-Square | Coeff Var| Root MSE | Iy Mean

0.976405 | 2.306705| 0.160960 | 6.977927 0.962340 | 2.719261| 0.173931 | 6.396259

Source | DF | Type I55 | Mean Square | F Value | Pr>F Source | DF [ Type I55| Mean Square | F Value [ Pr>F
Iconc 19.59020608 | 0.59920698 | 370.51 | <.0001 leonc 1| 6.80057386 | 6.80057386| 228.07 ( <.0001
leonc2 1| 0.04981757 0.04981757 1.92 | 0.1989 leonc2 1(0.05769618 0.05769618 1.91  0.2006

30
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Testing response -1 ,

31

= In order to assess response, null hypothesis must be
rejected for each of the substances

= Linearity has been assessed. The quadratic term can be
removed from the model

= Run a linear model for each substance:
= E[log(Y)]=B,+ B4:log(concentration)

= Reject null hypothesis of no response if B, is significantly
different from zero

Results of response test m

32

substance=RS substance=TB
Sum of Sum of
Source DF Squares | Mean Square | F Value | Pr>F Source DF Squares | Mean Square | F Value | Pr>=F
Model 1| 9.50020698 | 9.50020698 | 339.21| <.0001 Model 1| 6.89957386 | 6.89957386 ( 209.10| <.0001
Error 10| 0.28299110 |  0.02829911 Error 10| 0.32996398 |  0.03209640
Corrected Total | 11 | 9.88219809 Corrected Total | 11| 7.22953784
R-Square | Coeff Var| Root MSE ( Iy Mean R-Square | Coeff Var| Root MSE | ly Mean
0.971364 | 2.410793| 0.168223 | 6.977927 0.954350 | 2.839017| 0.181649 | 6.396259
Source | DF | Type IS8 | Mean Square | F Value | Pr>F Source | DF | Type ISS | Mean Square | F Value | Pr>F
Icone 1(9.50020698 | 9.50920698 | 330.21( <.0001 Iconc 1| 6.80057386 | 6.80057386 | 200.10  <.0001
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Parallelism test _1 :

= Response has been assessed. Add substance and its
interaction with concentration to model

= Run a linear model for whole data over the chosen range:

= E[log(Y)]=B, + B;-log(concentration) + B,- Substance +
B5-log(concentration)*Substance

= Substance is modeled as a 0-1 variable

= Either test whether B4 is significantly different from
zero,

= Or better: construct a confidence interval for 34

33

Parallelism test results M

Sum of
Source DF Squares | Mean Square | F Value | Pr=F
Model 3] 18.52880442 6.17626814 | 201.52 | <.0001
Error 20| 0.61295509 0.03064775
Corrected Total | 23 | 19.14175951

R-Square | Coeff Var | Root MSE | ly Mean

0.967978 | 2.617954| 0.175065 | 6.687093

Source DF Type 185 | Mean Square | F Value | Pr=F
leone 1| 16.38759802 | 16.38750892 | 534.71| <.0001
substance 1| 2.03002358| 2.03002358 66.24 | <.0001
lconc*substance | 1| 0.11118192 0.11118192 3.63| 0.0713

34
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Relative potency estimation _1

= The final bioassay model over the chosen range is:
= E[log(Y)]=B, + B;-log(concentration) + B, Substance
= Substance is modeled as a 0-1 variable
= This model implies that for the RS (substance=0)
= E[log(Y)]=B, + B4:log(concentration)
= And for the TB (substance=1)
= E[log(Y)]=(B, + B> )+ B4-log(concentration)

35

Relative Potency estimation m

i 8
B2
B1 \ RS A
Bot By log () log ﬁ = &
B
Bo
log(concentration)
36
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The final bioassay model

109

Log (v)

log (Concetration)
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Relative Potency estimation

Sum of
Source DF Squares | Mean Square | F Value | Pr=F
Model 2| 18.41762250 9.20881125 | 267.06 | <.0001
Error 21| 0.72413701 0.03448271
Corrected Total | 23 | 19.14175951

R-Square | Coeff Var| Root MSE | Iy Mean _ 0 5 8 17
0.962170 | 2.776920| 0.185695 | 6.687003 ﬁ — — _0‘5455
1.0662
Standard

Parameter Estimate Error | t Value | Pr> |t ﬁ = exp(—05455) = 05795 ~ 58%

Intercept 2.504488957 | B | 0.18244577 | 14.22 | <.0001

leonc 1066280765 0.04891191 | 21.80 | <.0001

substance RS | 0.581667656 | B | 0.07580976 7.67 | <.0001

substance TB | 0.000000000 B

The X'X matrix has been found to be singular, and a generalized inverse was
used to solve the normal equations. Terms whose estimates are followed by
the letter "B’ are not uniquely estimable.

38
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How to calculate a confidence i
interval ? m

= You can't.

= Estimators of § are linear combinations of the Ys, that
are normally distributed

= Therefore, estimators of 3 are normally distributed

A

= So the distribution of logﬁ:% is Cauchy

1

= |nstead of a confidence interval, we calculate fiducial
limits

39

Fieller’s theorem Jm

Let y and v be two unknown parameters, and let p= y/v.

Let a and b be unbiased estimators for y and v,
respectively, that are linear in observations that are
normally distributed.

Let the variances and covariance estimates of a and b be
V4452, V.82 and V,,s?, respectively, where s? is an error
mean square having m degrees of freedom.

Let t be the /2 critical value from a t distribution with m-1
degrees of freedom, and let g=t2s?v,,/b2.

Let R=a/b and estimate for p. Then upper and lower
confidence limits for p are:

40

© Yossi Levy 2011



Fieller’s theorem _1

1
&, IS ) v122 )
R- i;. v, —2Rv,, + R*v,, —g| v, -2

Vo

R,.R, =

l1-g

41

Proof of Fieller’s theorem

Let U=a-pb. Then EU=0 and its estimated variance is
S2(V41-2pV4o+ P?V4,) With m degrees of freedom.

Therefore:
P[Uz <P SZ(VH Y +pzv22)]: L

The results follows for solving the quadratic
equation in p.

42
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Fiducial limits calculation m

R-Square | Coeff Var | Root MSE ly!hﬂ/ S
0962170 | 2.776920 | (3185695} 6.687093
X'X Generalized Inverse (g2)
Intercept leconc | substance B3 | substance TB Iy
Intercept 0.96530855 | -0.247367194 | -0.083333333 0| 2.5944889575
leone -0.247367194 @93@) 8.21612E-17 0] L.0662307646
substance RS | -0.083333333 &21512]5—1?(@56@ 0] 0.5816676564
substance TB 0 0 1 0 0 0
Iy 2.5944880575 | 1.0662807646 | 0.5816676564 0| 0.7241370111
Va2 Vi
43

Troubleshooting m
.-J il

data.

= Problem: Exceptionally high residual error (MSE)

= Solution: this is an indication of technical problem — check
the bioassay process

= Problem: Exceptionally low residual error may cause F
values to exceed critical values.

= Solution: replace residual error by estimate from historical
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Standard

Response

Test sample

In dose (x)

45

4-parameter model T

EY =5+ a-o

= o - upper asymptote
= 3 - lower asymptote
= [ —slope factor

= v - horizontal location

= Validity of model: a, & and B — are same for RS and TB
= Log(relative potency) = ygs - Y18

46
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Quantal Bioassay _]

= Response is discrete
= Often a binary response: e.g. Dead/Alive

Distribution”

47

= Dose response function is sometimes called “Tolerance

= A logistic distribution is a natural model for such data

Example: Bacterial tolerance

Bacterial Dose Dead Alive
1.2:103 0 5
1.2-10* 0 5
1.2:10° 2 3
1.2:106 4 2
1.2:107 5 1
1.2:108 5 0

48
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Modeling ‘15 .,

Probability of death at level x; of drug (or bacterial
concentration) is

o exp{a+ﬂxi}
P( isxi)_ i_1+exp{a+ﬂxi}

Where Y, is the tolerance for subject i.

Then
log(lij =a+ fx,

i

49

LD50/ED50 M

= The dose at which 50% of subjects produce a response
is called LD50 or ED50 (LD=lethal dose, ED=effective
dose)

= Let x5,=log(LD50) and ps,=0.5 (probability of response at
the median of the tolerance distribution). Then

log(—1 Pso ):O:O?Jrﬁxso

— Pso
)%50 = _OA‘/:@
LD50 = exp{— 0?/,3}

50
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Confidence interval for LD50 -1

Using Taylor series expansion (the delta method):

v(fso)=£§o-[vf‘f‘)—2c°;f§’ﬁ e )]

Then a 100(1-a))% ClI for log(LD50) is

X5+ Z_g2 V(x)

51

Data and model |

52
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proc logistic output _1

Testing Global Null Hypothesis: BETA=0 Analysis of Maximum Likelihood Estimates = = =
s E - Estimated Covariance Matrix
Test Chi-Square | DF | Pr > ChiSq Standard Wald 2 I —
Likelihood Ratio 22.8356| 1 <0001 | |Parameter | DF | Estimate Error | Chi-Square | Pr > ChiSq arameter | Intercept| logdose
Score 178025 1| <ooor| |Imtercept | 1| 2680 31630 85857  0.0034| |Intercept | 10.0045) -0.7333%
Wald 20223 1 0.0027| | logdose 1| o707 | 02354 9.0223 0.0027( |loglose | -0.73338) 0.055418

LD50 = exp{9.268/0.7071} = 488942 ~ 4.8-10°

CI for log(LD50) is
13.1£1.96+/0.6005 = (11.6,14.6)

Cl for LD50 s
exp(11.6,14.6) ~ (10.9-10*,2.1-10%)

53

Comparing two drugs M

Drug |Dose Dead |Alive |Total
1 N 0.01| 0 30 |30
2 N 0.03| 1 29 (30 The dilution
3 N 0.10| 1 9 |10 assumption:
4 N 0.30| 1 9 |10
5/ s 030 0 10 |10 Zs = PLy
6 N 1.00| 4 6 |10
7 S 1.00| 0 10 |10
8 N 3.00f 1 9 |10
9 S 3.00 O 10 |10
10 N 10.00| 5 5 |10
11 S 10.00| 4 6 |10
12 S 30.00f 5 5 |10
13 N 30.00f 7 3 |10
14 S 100.00| 8 2 |10
54
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E{Death)

Comparing two drugs

= Dilution assumption: z?=p-zN for doses of S and N with

the same probability of response
= |f x represents log of dose, then xg= logp+xy
= Logistic model for drug S is:

1
1+ exp{— (as + Bx )}

Ps(xg) =

56
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Comparing two drugs _1

Therefore, for drug N, remembering that xg= logp+xy, a
logistic model for drug N is:

PN(XM) = Ps (10gp+xNi) =
1
1+ CXP{— (053 +ﬂ(10g,0+ Xni ))}
1
- 1+CXP{— ((Ots + plog p)"'ﬂxm’ )}
1

) 1+ exp{— (aN + Bxy; )}

57

Comparing two drugs m

Therefore, the dilution assumption implies that:
log{ Ps(X5) } =ag + fxg
1- Py (xs,')

log{M}:aN+ﬂxNi=0{S+,310g/0+,3xm
1= py(xy)

The assumption can be tested by fitting a model
with separate intercepts and slopes and then testing
for common slope

58
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Testing for common slope — SAS

output
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF | Estimate Error | Chi-Square | Pr = ChiSq
Intercept 1| -2.6943 0.5549 23.5731 <.0001
drug N| 1 1.3234 0.5549 5.6872 0.0171
logdose 1 0.9130 0.1764 26.7940 <.0001
logdose*drug | N | 1| -0.3167 0.1764 3Rz 0.0726

Interaction term is not statistically significant
=> common slope

=> the dilution assumption holds

59

Run model without interaction

Analysis of Maximum Likelihood Estim ates
Estimated Covariance Matrix
Standard Wald
Parameter DF | Estimate Error| Chi-Square| Pr>ChiSq Parameter | Intercept | drugN|( logdose
Intercept 1| 20420 02288 386153 <0001 Intercept | 0.103082 | -0.02826 | -0.0294
drug ~| 1| osso4| 0253 4.6074 0.0302 drug 0.02826 | 0.064481 | 0.01236
logdose 1| 0.7363 0.1254 344644 <0001 logdose -0.0294 | 0.01336 | 0.015732
The model :
log{p /(1- p)} = —2.0429+0.5504- I (Drug = N) +0.7363-log dose
For drug S:
log{p /(1— p)}=—2.0429+0.7363log dose
For drug N :

log{p /(1- p)}=—1.4925+0.7363-log dose

60
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The model -1

1.0+
0.9+
0.8+
0.7+
0.6+

0.5+

P (Death)

0.4+

0.3+

0.2+

0.1+

0.01

Parameter estimates

log LD50,, = — —LA92S ) 007 LD50,, =7.60
0.7363

log LD50, = _Z2049 ;595 LD50, =16.04
0.7363

Gy —dy 05504

S = = 0.7475
5 07363

log p=

p=2.11

62
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